Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Micromachines (Basel) ; 13(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2066262

RESUMEN

The coronavirus disease 2019 pandemic has spread worldwide and caused more than six million deaths globally. Therefore, a timely and accurate diagnosis method is of pivotal importance for controlling the dissemination and expansions. Nucleic acid detection by the reverse transcription-polymerase chain reaction (RT-PCR) method generally requires centralized diagnosis laboratories and skilled operators, significantly restricting its use in rural areas and field settings. The digital microfluidic (DMF) technique provides a better option for simultaneous detections of multiple pathogens with fewer specimens and easy operation. In this study, we developed a novel digital microfluidic RT-qPCR platform for multiple detections of respiratory pathogens. This method can simultaneously detect eleven respiratory pathogens, namely, mycoplasma pneumoniae (MP), chlamydophila pneumoniae (CP), streptococcus pneumoniae (SP), human respiratory syncytial virus A (RSVA), human adenovirus (ADV), human coronavirus (HKU1), human coronavirus 229E (HCoV-229E), human metapneumovirus (HMPV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (FLUA) and influenza B virus (FLUB). The diagnostic performance was evaluated using positive plasmids samples and clinical specimens compared with off-chip individual RT-PCR testing. The results showed that the limit of detections was around 12 to 150 copies per test. The true positive rate, true negative rate, positive predictive value, negative predictive value, and accuracy of DMF on-chip method were 93.33%, 100%, 100%, 99.56%, and 99.85%, respectively, as validated by the off-chip RT-qPCR counterpart. Collectively, this study reported a cost-effective, high sensitivity and specificity on-chip DMF RT-qPCR system for detecting multiple respiratory pathogens, which will greatly contribute to timely and effective clinical management of respiratory infections in medical resource-limited settings.

2.
Eng Appl Artif Intell ; 115: 105323, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1982980

RESUMEN

With the global outbreak of COVID-19, there is an urgent need to develop an effective and automated detection approach as a faster diagnostic alternative to avoid the spread of COVID-19. Recently, broad learning system (BLS) has been viewed as an alternative method of deep learning which has been applied to many areas. Nevertheless, the sparse autoencoder in classical BLS just considers the representations to reconstruct the input data but ignores the relationship among the extracted features. In this paper, inspired by the effectiveness of the collaborative-competitive representation (CCR) mechanism, a novel collaborative-competitive representation-based autoencoder (CCRAE) is first proposed, and then collaborative-competitive broad learning system (CCBLS) is proposed based on CCRAE to effectively address the issues mentioned above. Moreover, an automated CCBLS-based approach is proposed for COVID-19 detection from radiology images such as CT scans and chest X-ray images. In the proposed approach, a feature extraction module is utilized to extract features from CT scans or chest X-ray images, then we use these features for COVID-19 detection with CCBLS. The experimental results demonstrated that our proposed approach can achieve superior or comparable performance in comparison with ten other state-of-the-art methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA